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Counter-gradient subgrid-scale transport
and energy backscatter in turbulent deflagrations

By J. O’Brien, J. Urzay, A. Y. Poludnenko†, P. E. Hamlington‡ AND M. Ihme

Direct Numerical Simulations (DNS) of a turbulent premixed flame are performed in
this study. The numerical results are differentially filtered to carry out a priori analy-
ses of the interscale transfer of kinetic energy between subgrid and supergrid levels in
LES. Thermal-expansion-driven backscatter of kinetic energy is found to prevail over
forwardscatter throughout the entire flame brush in a manner that is interrelated with
counter-gradient diffusion of scalars and with non-Boussinesq transport of momentum.

1. Introduction

The deployment of chemical energy in combustion reactions leads to thermal expansion
in flames. In turbulent combustion, flame scales typically correspond to regions near the
high wavenumber end of the inertial subrange or within the Kolmogorov range. The re-
sulting decrease in density caused by combustion influences the transport of momentum,
mass, and thermal energy. The extent to which thermal-expansion effects modify the
inter-scale transfer of energy in turbulent combustion is largely unknown. Of particular
interest for developing LES predictive capabilities of limit phenomena is the study of lo-
calized effects of combustion-driven overflow of subgrid energy in turbulent deflagrations.
In analyzing inter-scale transfer of energy in turbulent flows, it is expedient to refer

to the concept of backscatter. Specifically, backscatter is understood as the transfer of
kinetic energy from the smallest scales in a flow (in LES, the subgrid) back to the larger
(resolved or supergrid) scales, or equivalently, the local reversal of the kinetic-energy
cascade. Early works on incompressible homogeneous isotropic turbulence provided an
explanation of backscatter using the spectral form of the kinetic-energy equation, while
attributing backscatter to non-linear, non-local triadic interactions between relatively
similar scales that exhibited a reverse-cascading tendency (Domaradzki & Rogallo 1990).
Extensions that account for compressibility effects on spectral kinetic-energy transfer in
homogeneous isotropic turbulence have been made previously in numerous studies (see
Sagaut & Cambon (2008) for a seminal review). It should be emphasized, however, that
the spectral representation of backscatter is contingent on the utilization of the Fourier
basis as the dissecting mathematical tool. As a result, practically insurmountable limita-
tions arise from using the Fourier basis to describe the energy cascade in inhomogeneous
flows with variable density, variable thermodynamic coefficients, and exponentially non-
linear chemical sources, as in turbulent combustion.
In a study that departed from turbulence homogeneity, Piomelli et al. (1991) focused

on backscatter understood as the reverse flux of energy at scales comparable to the LES
grid size. For that purpose, they filtered the solution of an incompressible turbulent
channel-flow DNS and evaluated the SGS dissipation. Their results indicated that local
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backscatter of kinetic energy from the subgrid to the supergrid occurred only slightly less
frequently than forwardscatter, while its intensity was of roughly the same magnitude
as the forwardscatter, thus suggesting that the mean SGS dissipation was the difference
between those two much larger quantities. In addition, their findings suggested that
backscatter statistics were essentially independent of the choice of filtering technique,
aside from some sensitivity in the intensity magnitude itself.

Employing an approach similar to Piomelli et al. (1991), Aluie et al. (2012) analyzed
the effects of flow divergence on kinetic-energy transfer in the context of high-Mach
number compressible homogeneous isotropic turbulence. Specifically, compressibility was
identified as a mechanism that interfered with the otherwise conservative kinetic-energy
cascade found in incompressible flows by enabling exchange between thermal and kinetic
energies within a scale interval that spanned from large eddies down to a cutoff size,
whose magnitude became increasingly smaller as the turbulent Mach number increased.
In the problem studied by Aluie et al. (2012), however, compressibility was forced from
the large scales, a situation which at first sight departs from the one typically found in
combustion, namely, the concomitant generation of flow divergence at small scales (of
the same order as the flame width) in low-Mach number flames.

Effects of compressibility, statistical inhomogeneity, and combustion chemical reactions
on turbulence characteristics were examined in a recent study on the dynamics of the
resolved kinetic energy in supersonic non-premixed turbulent flames (O’Brien et al. 2014).
Differentially filtering DNS results showed a correlation between backscatter and flow
expansion, which suggested potential combustion-driven reverse-cascade transport that
could not be fully isolated from compressibility effects because of the high Mach numbers
and numerous shock waves involved. However, contrary to premixed flames, the heat
release in diffusion flames has a vanishing effect on the turbulent cascade, since the
combustion energy is predominantly deployed within the smallest eddies where molecular
mixing occurs and forward dissipation dominates (Knauss & Pantano 2009).

In this study, numerical experiments in DNS are employed to study the inter-scale
transfer of energy in LES of deflagrations propagating through forced turbulence. The
remainder of this report is structured as follows. In Section 2, the formulation and compu-
tational setup are briefly outlined. Section 3 is devoted to budgeting the resolved kinetic-
energy equation. Section 4 studies the relation between backscatter and the depletion of
SGS variances of thermal energy and mass fraction. Section 5 is focused on studying the
counter-gradient transport of scalars. Finally, conclusions are drawn in Section 6.

2. Formulation and computational setup

In this study, the unsteady, compressible, reacting Navier-Stokes equations

∂ρ
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Figure 1. Sample snapshot from the simulations.

are integrated numerically. In the formulation, ρ is the density, ui is the velocity, T
the temperature, P the thermodynamic pressure, Y the product mass fraction, cv the
constant-volume specific heat, and λ andD the thermal conductivity and mass diffusivity,
respectively. Additionally, τij = 2µSij+(κ−2µ/3)∆vδij is the viscous stress tensor, with
µ being the dynamic viscosity, κ the bulk viscosity, and Sij = (1/2)(∂ui/∂xj + ∂uj/∂xi)
is the strain-rate tensor, with ∆v = ∂ui/∂xi being the flow dilatation. A constant specific
heat is used in the calculations, while temperature-dependent values of viscosity, thermal
conductivity, bulk viscosity, and mass diffusivity are employed according to a power
law with temperature exponent 0.7. A single-step, unimolecular, irreversible Arrhenius
reaction is assumed that releases q units of chemical heat per unit mass of fuel burnt,
and for which the chemical source term in Eqs. (2.3) and (2.4) can be expressed as
ω̇ = ρA(1−Y ) exp(−Ta/T ), where A and Ta are the pre-exponential factor and activation
temperature, respectively. Equations (2.1)-(2.4) are supplemented with the equation of
state P = ρRgT , with Rg being the gas constant. A one-dimensional asymptotic analysis
of Eqs. (2.1)-(2.4) can be performed at large activation energies, in absence of free-
stream turbulence, and for equidiffusive flames, to obtain the laminar flame speed SL =
[2AρuDT,u(1−α)β−2 exp(−Ta/Tb)]

1/2, where α = (Tb−Tu)/Tb is the thermal expansion
coefficient, β = αTa/Tb is the Zel’dovich number, and the subindexes b and u refer
to burnt and unburnt conditions, respectively. The velocity scale SL, along with the
flame width δL ∼ DT /SL (with DT the average thermal diffusivity), are used below for
estimating the characteristic dimensionless parameters of the problem.
A sample snapshot from the computations is shown in Figure 1 along with the employed

coordinate system. A DNS-tailored version of the Athena-RFX reacting compressible
code (Hamlington et al. 2011) was used in the computations that incorporates molecular-
transport fluxes. The numerical scheme is explicit, with third-order spatial and second-
order temporal discretization accuracies. The calculation was conducted on a structured
uniform cartesian grid with 256×256×8192 elements in the x1, x2, and x3 directions,
respectively, with x2 and x3 corresponding to periodic directions (e.g.m see Figure 1).
The corresponding domain length in physical units was 8δL×8δL×256δL. This numerical
resolution provided 32 cells per flame thickness δL, and 1.0 cells per Kolmogorov length ℓk
in the unburnt mixture, where the viscosity is smallest and turbulence was least resolved.
Homogeneous isotropic turbulent motion was forced in the entire computational do-

main by injecting kinetic-energy fluctuations at wavenumbers corresponding to the span-
wise length of the computational domain. Additional details about the forcing procedure
are available elsewhere (Hamlington et al. 2011). The computations were first run with-
out chemical source terms in a triply periodic domain to allow the turbulence to reach a
statistically stationary state. Once the mixture is ignited, the domain is treated as doubly
periodic in the spanwise directions x1 and x2, while zero-gradient boundary conditions
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Figure 2. (a) Line profiles and (b) surface contours of the one-dimensional kinetic-energy
spectrum along x1 as a function of the planar-averaged product mass fraction.

are applied at the upstream and downstream boundaries. Results are analyzed after 5.6
integral times ℓ/uℓ have passed since ignition, during which the flame traveled a distance
comparable to 4 integral length scales ℓ.

Relevant dimensionless parameters of the simulations are listed in Table 1. The compu-
tations were designed to maximize scale separation between the laminar-flame thickness
δL and the Kolmogorov length ℓk in the fresh gases (within the inherent limitations of
DNS-resolution cost). This allowed for deployment of combustion energy across a wide
range of turbulent scales rather than constraining it to the high wavenumber range,
where molecular dissipation dominates. In addition, special focus was directed to param-
eter regimes that enhanced counter-gradient turbulent diffusion, for which the integral
velocity scale was set to be comparable to the characteristic velocity augmentation of the
burnt gases through the flame due to thermal expansion. Compressibility effects were
minimized by imposing small turbulence intensities and small flame speeds in compari-
son with the speed of sound, by which the viscous dissipation term in Eq. (2.3) became
negligible along with the spatial variations of the thermodynamic pressure in Eq. (2.2).
The resulting set of parameters, whose definitions can be found in the literature (Bray
1995; Peters 2000), involved order-unity Damköhler, Karlovitz and Bray numbers, while
the Taylor-Reynolds number was moderately large in order to warrant separation of
scales.

It should be emphasized, however, that the release of chemical energy increased the
products temperature in the simulations by a factor of order (1−α)−1 ∼ 7, which led to
a 28-fold increase in the kinematic viscosity on the burnt side of the flame. This effect,
in turn, reduced the value of the Taylor-Reynolds number Reλ listed in Table 1 down
to 17.05 on the products side, which led to a 10-fold decrease in the Kolmogorov length
and strongly attenuated the high-wavenumber energy of the turbulence in that region.
These considerations are illustrated in the one-dimensional kinetic-energy spectra shown
in Figure 2 as a function of the planar-averaged product mass fraction.

The differential-filtering procedure follows earlier work by O’Brien et al. (2014). In the
present study, however, the width of the filter h is kept constant and equal to the laminar
flame thickness δL. Effects of filter type on the evaluation of SGS energy dynamics are
briefly discussed in Section 5. In addition, the filtering-operator notation follows the same
convention as in O’Brien et al. (2014) for any fluid variable f , with f , f̃ indicating filtered
and Favre-filtered values, respectively, while 〈f〉 denotes the spanwise planar average of
filtered variables.
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α 0.9 thermal expansion coefficient

Le 1.0 Lewis number

Ka 2.8 Karlovitz number

Da 1.2 Damköhler number

Reλ 95.0 Taylor-Reynolds number

NB 2.9 Bray number

uℓ/SL 2.1 turbulence intensity

MaL 0.01 Mach number

β 5.6 Zel’dovich number

h/δL 1.0 filter to laminar-flame width ratio

Table 1. Characteristic dimensionless parameters, with Ka, Da, Reλ and MaL being
evaluated on the unburnt side of the flame.

3. Kinetic-energy transfer dynamics in the turbulent flame brush

Upon multiplying the momentum equation (2.2) by ũi, the transport equation

∂ρk

∂t
+

∂

∂xi
(ρũik) = αΠ + αSGS + αv +Π− ǫv − ǫSGS (3.1)

is obtained for the resolved kinetic energy k = ũiũi/2. In this formulation, αΠ, αv, and
αSGS are given by

αΠ = −
∂

∂xi

(
p′ũi

)
, αv =

∂

∂xj
(τ ij ũi) , αSGS = −

∂

∂xj
(Tij ũi) , (3.2)

which represent the surface work done by the pressure, viscous, and SGS turbulent forces,
respectively. In Eq. (3.2), Tij = ρ(ũiuj − ũiũj) is the SGS stress tensor, and p′ = P −P0

is the filtered hydrodynamic pressure (a quantity of order Ma2LP0 ≪ P0), with P0 the
pressure level at an arbitrary point in the flow field. While αΠ and αv are closed terms,
the surface work done by the subgrid αSGS depends on the unclosed SGS stress tensor
and therefore carries information of the subgrid dynamics.
The remaining terms Π, ǫSGS and ǫv on the right-hand side in Eq. (3.1) are defined as

Π = p′∆̃v, ǫv = τ ij S̃ij , ǫSGS = −TijS̃ij , (3.3)

where ∆̃v and S̃ij are, respectively, the divergence and strain rate of the resolved velocity
field. In particular, Π and ǫv are closed terms that represent, respectively, the internal-
energy variations due to the work of resolved flow expansion against the hydrodynamic
pressure, and the dissipation of kinetic energy caused by the filtered molecular transport.
Of particular interest is the unclosed SGS dissipation ǫSGS, which is not a true dissipation
as it involves only inertial dynamics, and is the prevailing mechanism of kinetic-energy
transfer between the subgrid and supergrid at high Reynolds numbers. Specifically, ǫSGS <
0 corresponds to backscatter of kinetic energy from the subgrid (O’Brien et al. 2014).
The mechanism by which anisotropy is developed in the velocity field through the flame

has been studied in earlier works (Aldredge & Williams 1991; Hamlington et al. 2011).
A similar effect occurs in the resolved and subgrid velocity fields. To illustrate this, the
component-wise variations of the planar-averaged resolved and SGS kinetic energies, k
and kSGS, with kSGS = (ũiui− ũiũi)/2, are shown in Figure 3(a,b). In particular, while the
spanwise components undergo relatively slow variations, the streamwise resolved kinetic
energy is enhanced through the flame in both resolved and subgrid scales. However,
the corresponding enhancement of streamwise kSGS is short-lived, in that the increase of
viscosity on the products side rapidly attenuates this updraft of SGS energy.
The volume integrals of αΠ, αv, and αSGS vanish in triply periodic problems such
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Figure 3. Planar-averaged distributions of (a) resolved and (b) subgrid kinetic energies, in-
cluding streamwise and averaged spanwise components, along with (c) SGS momentum and (d)
pressure-work transport terms in Eq. (3.1). The planar average of the filtered product mass
fraction, centered at the streamwise location of maximum slope, is included in panel (a) for
illustration of reaction progress.

as homogeneous isotropic turbulence, and in particular types of inhomogeneous flows
such as temporal mixing layers or periodic turbulent channels. In those scenarios, the
volumetric statistics of the resolved kinetic energy are modulated by the remaining terms
Π, ǫSGS, and, to a lesser extent, ǫv (Aluie et al. 2012; O’Brien et al. 2014). On the other
hand, in general inhomogeneous flows, all four terms on the right-hand side of Eq. (3.1)
in principle participate in the conversion of kinetic energy. For instance, in the turbulent
deflagration analyzed here, spanwise integration of αΠ, αv, and αSGS leads to a one-
dimensional transport equation of the planar-averaged flux of resolved kinetic energy
along x3,

〈ρũ3k〉 ∼ −〈p′ũ3〉 − 〈T3,3ũ3〉 −

∫ x3

−∞

〈ǫSGS〉dx3 +

∫ x3

−∞

〈Π〉dx3 + c1, (3.4)

where c1 is a constant of integration that depends on upstream turbulence conditions.
While the first two terms on the right-hand side of Eq. (3.4) distribute kinetic energy
through the flame in the streamwise direction, the third and fourth terms inject or destroy
energy as a result of spanwise collective effects, as shown in Figure 3(c,d), thereby making
ǫSGS a quantity that in principle is not fully conserved through the spanwise turbulent
cascade. By way of contrast, in incompressible forced homogeneous isotropic turbulence,
the cumulative effects of the first and second terms vanish due to the periodicity of
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events and so does the fourth term because of flow solenoidality, while a net effect of the
SGS dissipation, in principle independent of the filter width, remains after full-volume
integration that balances the large-scale forced injection of energy and suffices to describe
the statistical dynamics of the turbulent kinetic energy.
Combustion in the flame leads to an increase of resolved thermal energy and subsequent

large-scale flow dilatation. At low Mach numbers, only a small amount of this thermal
energy excess (proportional to Ma2L ≪ 1) is transformed into kinetic energy through the
resolved pressure-dilatation work Π in Eq. (3.1). The corresponding amount of kinetic
energy generated this way is, however, sufficient to compete with the backscatter of
kinetic energy from the subgrid, as shown in Figure 3(c,d) and described below.
It is worth highlighting the planar-averaged backscatter of SGS kinetic energy that oc-

curs persistently in Figure 3(c) throughout the entire flame brush. Despite the prevailing
importance of the combination αSGS − ǫSGS for generating kinetic energy in this inhomo-
geneous flow, emphasis is purposely placed here on the spatially coherent distribution
of backscatter ǫSGS < 0 in the flame, since Boussinesq models of turbulent transport
typically feed directly on strictly dissipative models of the former. To see this, consider
the standard Boussinesq closure model

Tij −
2

3
ρkSGSδij = −2ρνt

(
S̃ij −

∆̃vδij
3

)
(3.5)

for the SGS turbulent stress tensor. In Eq. (3.5), νt represents an unknown scalar eddy
viscosity, whose magnitude depends on the filter width. In principle, Eq. (3.5) represents
an overdetermined system of five independent equations. In the present calculations,
however, the largest contribution to νt is produced by the positive normal strain rate
S̃3,3 because of the dominant thermal expansion effect along the same direction (and
given also the fact that the flame is not excessively contorted). This suggests a tendency
towards reverse (-x3 direction) unresolved turbulent transport when T3,3 is computed
by evaluating the right-hand side of Eq. (3.5) using, for instance, a strictly dissipative
representation of νt such as the Smagorinsky model. Results from the filtered DNS in-
dicate, on the other hand, that T3,3 is larger than the hydrostatic (isotropizing) SGS
stress −2ρkSGS/3, and therefore the unresolved turbulent transport has an anomalous
(or non-Boussinesq) tendency to occur in the forward (+x3) streamwise direction. The
discrepancy can be understood by noticing that T3,3/ρ equals twice the SGS kinetic
energy in the streamwise direction, which undergoes an unparalleled sharp increase in
the flame, as shown in Figure 3(b). Because of this anisotropy induced by the thermal
expansion, the resulting streamwise SGS kinetic energy is much larger than the corre-
sponding average value per spatial direction, kSGS/3, the energy excess being proportional
to the tendency towards non-Boussinesq transport. Nonetheless, it could be expected that
Eq. (3.5) may still render a globally positive νt and subsequent Boussinesq-like transport
as a result of counteracting three-dimensional effects. That this is not the case in the
strongly anisotropic flow encountered in the present study can be understood by formally
relating the anomalous transport of momentum to SGS backscatter, for which we con-
tract Eq. (3.5) with S̃ij as in the original dynamic Smagorinsky procedure to obtain the
expression

νt =
ǫSGS + (2/3)ρ̃kSGS∆̃v

2ρ
(
|S̃|2 − ∆̃2

v/3
) (3.6)

that accounts for the three directions. Note that Lilly’s least-squares approach provides
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x3, along with mean (solid line) and standard deviation (dashed lines).

qualitatively similar results for the purposes of this discussion. The denominator in
Eq. (3.6) is a positive quadratic form. Conversely, in the numerator of Eq. (3.6), the
persistent SGS backscatter in the flame drives νt towards negative values, while the sec-
ond term, which involves the work done by the subgrid dynamic pressure against the flow
dilatation, tends to restore νt to positive values by isotropizing the transport, both terms
being comparable in the simulations. The net outcome, however, is a predominantly nega-
tive eddy viscosity throughout the flame, as shown in Figure 4, with exceptions upstream
where homogeneous isotropic dynamics are dominant, thereby suggesting that the strong
anisotropic effect caused by thermal expansion supersedes any transversal restoration and
renders global non-Boussinesq transport in the three spatial directions.

4. Joint statistics between kinetic-energy backscatter and depletion of SGS

variances of thermal energy and mass fraction

Subtraction of Eq. (3.1) from the transport equation of the filtered kinetic energy,

K̃ = ũiui/2, leads to the transport equation for kSGS

∂

∂t
(ρkSGS) +

∂

∂xi
(ρũikSGS) =

∂

∂xi

(
p′ũi − p′ui + τijuj − τ ij ũj + Tij ũi + ρũiK̃ − ρũiK

)

+ p′∆v − p′∆̃v + τ ij S̃ij − τijSij + ǫSGS. (4.1)

In particular, dynamic models of eddy viscosity often rely on Eq. (4.1) as an additional
constraint in energy repartition (Ghosal et al. 1995), which here should account for the
competition between backscatter and thermal expansion in establishing the equilibrium
level of kSGS shown in Figure 3(b). A parallelism may be established between Eq. (4.1),
and the corresponding transport equations for the SGS variances of the thermal energy

and product mass fraction, c2vT̃
′′2 = c2vT̃

2−c2vT̃
2 and Ỹ ′′2 = Ỹ 2− Ỹ 2, respectively, which

are given by

∂

∂t

(
ρỸ ′′2

2

)
+

∂

∂xi

(
ρũiỸ ′′2

2

)
=

∂

∂xi

(
Ỹ Ji − Y Ji + Ỹ Ji +

ρũiỸ 2 − ρũiY 2

2

)

+ Ji
∂Y

∂xi
− J i

∂Ỹ

∂xi
+ ρY ω̇ − ρỸ ˜̇ω + ǫSGS,Y , (4.2)
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∂

∂t

(
ρcvT̃ ′′2

2

)
+

∂

∂xi

(
ρcvũiT̃ ′′2

2

)
=

∂

∂xi

(
T̃ qi − Tqi + T̃Qi +

ρcvũiT̃ 2 − ρũiT 2

2

)

− P∆vT + P∆vT̃ + τijSijT − τijSij T̃ + ρqT ω̇ − ρqT̃ ˜̇ω + ǫSGS,T . (4.3)

In Eqs. (4.2)-(4.3), Ji = −ρD∂Y/∂xi and qi = −λ∂T/∂xi are molecular fluxes of mass

and heat, respectively, while Ji = ρ(ũiY − ũiỸ ) and Qi = ρcv(ũiT − ũiT̃ ) represent their
turbulent counterparts.

Although the detailed analysis of Eqs. (4.2)-(4.3) is beyond the scope of this report, it
is of some interest to note the presence of the unclosed pseudo-dissipation terms

ǫSGS,Y = −Ji
∂Ỹ

∂xi
, ǫSGS,T = −Qi

∂T̃

∂xi
. (4.4)

In a similar way as backscatter participates in modulating the updraft of SGS kinetic
energy, the pseudo-dissipations ǫSGS,Y and ǫSGS,T also become statistically negative in the
flame region in an attempt to evacuate the corresponding energy from SGS variances and
transfer it to the resolved field, as illustrated in Figure 5(a,b). For the most part of the
flame brush, simultaneous occurrence of backscatter (ǫSGS < 0), ǫSGS,Y < 0 and ǫSGS,T < 0
is observed in more than 40% of the points, as shown in Figure 5(c,d). This effect, in
turn, can be related to counter-gradient transport of scalars, as described below.
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Figure 6. Contours of the joint PDF of the eddy viscosity νt against (a) species eddy
diffusivity Dt and (b) thermal eddy diffusivity DT,t in the flame brush.

5. Counter-gradient subgrid-scale transport in the turbulent flame brush

Conditions corresponding to the occurrence of counter-gradient diffusion of scalars
typically involve large thermal expansion ratios and low turbulent intensities, as in the
present investigation. In this limit, the large-scale velocity fluctuations in the fresh turbu-
lent gases, uℓ, become comparable to or larger than the characteristic velocity augmen-
tation normal to the flame due to heat release, uℓ ∼ SLα/(1−α), thereby yielding Bray
numbers of order unity or larger (Bray 1995). As a result, the prevailing acceleration of
the flow in the forward streamwise direction, which was described in Section 3 in the
context of non-Boussinesq transport, overcomes the tendency of turbulent eddies to stir
the scalars in the burnt region and mix them back with fresh gases upstream from the
flame.

In the LES context, the corresponding gradient expressions for species and thermal-
energy turbulent transport become

Ji = −ρDt
∂Ỹ

∂xi
, Qi = −ρcvDT,t

∂T̃

∂xi
,

whereDt and DT,t are, respectively, the eddy coefficients of species and thermal diffusion,
whose values are mostly determined by the streamwise dynamics. Similar expressions to
Eq. (3.6) can be derived to evaluate Dt and DT,t from the DNS by multiplying by the
gradients of mass fraction and temperature, namely

Dt =
ǫSGS,Y

ρ
(
∂Ỹ /∂xi

)2 , DT,t =
ǫSGS,T

ρcv

(
∂T̃ /∂xi

)2 , (5.1)

which minimize the fitting error in the least-squares sense and imply connections with
the pseudo-dissipations of SGS variances ǫSGS,Y and ǫSGS,T defined in Eq. (4.4).

Of particular interest for LES-modeling purposes is to notice the simultaneous occur-
rence of counter-gradient diffusion of scalars and the transport of momentum against
the Boussinesq approximation. This is observed in Figure 6, where approximately 40%
of the points lie in the lower left quadrants as an indirect consequence of the correla-
tions between backscatter and the pseudo-dissipations (4.4). These results suggest that
palliation of counter-gradient transport, through particular LES closures or combustion
models, may require additional consideration of a correspondingly appropriate closure
for SGS momentum transport that correctly captures the non-Boussinesq dynamics.
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6. Concluding remarks

In this study, DNS were employed to compute a turbulent deflagration in a parameter
regime of interaction between the undisturbed flame and the forced turbulence, which was
prone to develop counter-gradient diffusion. Differentially filtering and planar-averaging
the DNS results revealed intense backscatter in the flame that prevailed over forward-
scatter. Similarly, the flame brush was characterized in its entirety by dominant counter-
gradient diffusion of scalars that occurred simultaneously with non-Boussinesq transport
of momentum. This anomalous transport was connected to the strongly anisotropic up-
draft of SGS kinetic energy that results from a balance between the energy injected by
thermal expansion, enabled by the chemical heat deployed in the flame, and its backscat-
ter into the resolved field. Future directions of this work may involve the revision of
algebraic RANS closures for scalars (Veynante et al. 1997; Robin et al. 2012) to account
for accelerating thermal expansion effects in LES of turbulent deflagrations, along with
consideration of appropriate momentum closures consistent with the persistent dynamics
of kinetic-energy backscatter observed in the simulations.
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